LAmbre LAA Occluder Updates

5th APCASH
Hong Kong
10th October, 2014

Yat-yin LAM MBBS MRCP FHKCP FHKAM FESC FRCP FACC MD

Associate Professor, Prince of Wales Hospital, The Chinese University of Hong Kong (CUHK)
President, Hong Kong Society of Congenital and Structural Heart Disease (HKCASH)
Characteristics

1. Two parts: LA Cover and Umbrella. "An Umbrella in LA Appendage"

2. Double-membrane design: A distal membrane to seal the appendage if that in the cover fail to do so.

3. TiN-coated LA cover with recessed hub to promote faster endothelialization and to reduce delayed thrombus formation.

4. Specially-designed umbrella (8 frames + PET membrane + 8 hooks) for multiple recapture and repositioning; only smaller sheaths (8-10Fr, Sizes 16-36mm) required.
Partial deployment of umbrella at proximal LAA
Anchoring Mechanisms

3 Anchoring Mechanisms:
- 8 small hooks
- Stenting effect of the over-sized umbrella
- 8 individual frames (trapped in trabeculations)
Two Specifications

Standard
- 16-36mm
- Cover 4-6mm larger

Special
- 16-26mm
- Cover 12-14mm larger
- Suitable for:
 - multiple lobes with restrictive septum
 - Small LAA with large opening
-> Opening up the umbrella at proximal LAA (active roll-in of stabilizing hooks)
-> Distal positioning of delivery catheter is not required!
-> Less demanding on catheter alignment in perpendicular to ostial axis!

Comparisons with Current LAA occluders

<table>
<thead>
<tr>
<th></th>
<th>WATCHMAN</th>
<th>ACP</th>
<th>LAmbre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leak</td>
<td>More likely</td>
<td>Less likely</td>
<td>Less likely</td>
</tr>
<tr>
<td>Dependence on LAA depth</td>
<td>YES</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Delivery Sheath</td>
<td>14 Fr</td>
<td>9-13 Fr (13)</td>
<td>8-10 (9)</td>
</tr>
<tr>
<td>Procedural control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep seating of delivery catheter</td>
<td>Required</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td>Backward bounce of the device</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Recapture and Repositioning</td>
<td>Limited</td>
<td>Limited</td>
<td>Full</td>
</tr>
</tbody>
</table>
Clinical Studies Updates Sept 2014

- 192 human implants were then performed successfully (184/184 attempts, 100% implant success)
 - 60: 2 German Centers for CE study (Nov 2013 – June 2014)
Transcatheter Left Atrial Appendage Closure with Lifetech LAmbre Device: Early Asian Experience

Yat-Yin Lam¹, Yan Yao², Congxin Huang³, Nguyen Lan Hieu⁴, Muhammad Munawar⁵ Yawei Xu⁶
1. Prince of Wales Hospital, The Chinese University of Hong Kong
2. Fuwai Hospital, Beijing, China
3. Renmin Hospital of Wuhan University, China
4. Hanoi Heart Hospital, Vietnam
5. Binawaluya Hospital, Indonesia
6. Shanghai Tenth People’s Hospital of Cardiology, China
Oct 2012 – June 2014

6 Asian Centers: Hanoi (n=2), Jakarta (n=18), Beijing (n=4), Wuhan (n=7), Hong Kong (n=3), Shanghai (n=32)

Inclusion: Stable NVAF patients with $\text{CHA2DS2-VASc} \geq 2$

Exclusion: LAA thrombus, NO anatomical exclusion criteria

Feasibility: Stable device placement without significant leak (>3mm peri-device leak)

Safety: A composite of CV death, device embolization, stroke, systemic embolism, MI, pericardial effusion/cardiac tamponade, major bleeding requiring intervention/transfusion, & need for CV surgery 7 days within the procedure
66 NVAF patients; Aged 67±10; 50% Male (n=33)

CHA2DS2-VASc: 3.8±1.4; HAS-BLED: 2.4±1.2

Procedure: General anesthesia/Deep sedation (n=61), Local anesthesia (n=6); Fluoroscopic +/- TEE guidance

Procedural time (min): 63±21; Fluoro. time(min): 12±4

Landing zone diameter(mm): 22.2±4.8; Device size (mm): 26.7±4.5

Standard device (n=62), special device (n=4)

Feasibility: Successful device implantation 100% ; Significant Peri-device leakage (color-Doppler width>3mm): 1 (4mm leak)

Safety (7-day events): 2 air-embolism, 1 mild pericardial effusion, no stroke or device embolization, no transfusion needed
Severe procedural-related complications compared with other 2 devices

<table>
<thead>
<tr>
<th></th>
<th>PROTECT-AF</th>
<th>ACP Retrospective European Registry</th>
<th>LAmbre Global Registry</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients (time of follow-up)</td>
<td>463 (7 days within procedure)</td>
<td>143 (<24 hour or upon discharge)</td>
<td>#192 (7 days within procedure)</td>
</tr>
<tr>
<td>Implantation success</td>
<td>401/463 (91%)</td>
<td>132/137 (96%), not attempted in 6</td>
<td>192/192 (100%)</td>
</tr>
<tr>
<td>Serious pericardial effusion</td>
<td>22 (4.8%)</td>
<td>5 (3.5%)</td>
<td>*2 (1.0%)</td>
</tr>
<tr>
<td>Procedural stroke</td>
<td>5 (1.1%)</td>
<td>3 (2.1%)</td>
<td>1 (0.5%)</td>
</tr>
<tr>
<td>Device embolization</td>
<td>3 (0.6%)</td>
<td>2 (1.4%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

#the only exclusion criteria was the presence of LAA thrombus, no other anatomical exclusion criteria (i.e. patients with small, large or shallow LAA all included)
*1 due to stiff guidewire perforation of LAA during procedure, another due to delayed effusion 7 days after implantation
Case 1 - Routine Case
Case 2- Large Appendage

TEE 135 Degree

RAO Caudal Projection

34mm

35mm
Large Appendage – 36mm device, 10 Fr sheath
LAA angiogram by a 10 mm pigtail shows a very shallow appendage
Special type of L Ambre was used

Aggressive tug test at the end confirmed device stability
Conclusions

- Our preliminary human experience in Asia suggested LAA occlusion with LAmbre device is feasible in various LAA anatomies with no serious peri-procedural events.
- Main advantages of this device include small delivery system, ease of use and the ability to be fully retrievable and repositionable during implantation.
- Human trials with this novel device are underway in Asia/Europe to evaluate its long-term safety and efficacy.